
A Mobile Operating System Commerical Malware Detection Survey

Imani Palmer Jordan Martin
Department of Computer Science Department of Computer Science

University of Illinois at Urbana-Champaign University of Illinois at Urbana-Champaign
ipalmer2@illinois.edu jmmarti3@illinois.edu

Abstract

Android is a software framework for mobile devices.
The Android operating system is based on the Linux
kernel designed as a touchscreen for mobile devices.
Android is open source and licensing allows the soft-
ware to be modified freely. The Android community
has a large number of developers writing applications
through the primary language, Java. There are ap-
proximately 25 billion Android applications available
in the Google Play store. And as of May 2013 Android
has been deemed the most popular platform, holding
71% of the mobile developer population.

The popularity and openess of this mobile operating
system increases the risk of exposure of malware.[13]
However, most commercialized approaches fail to pro-
vide beyond basic signature detection. Signature de-
tection is the scanning of files provided by the appli-
cation, and checking them for known virus signatures.
Signature-based detection only protects against known
viruses and fails to prevent new viruses from being in-
stalled. This leads to the question of the true benefits
of security applications and the potential solutions to
the constant threat of malware. [10]

The goal of this paper is to compare commerical tools
against known threats and find weak points that can be
improved. We gathered empirical data on several com-
mercial anti-malware applications from GooglePlay.
This gave us a knowledge base to use when making
the decision of which anti-malware products to in-
stall. Malware was loaded onto the device using an
Android injector on an unprotected device as well as
with six different anti-malware applications. Based on
the results, we determine that several common com-
mercial anti-virus applications fall short of full protec-
tion, even against malware documented from previous
years.

1 Introduction

The Android mobile device is built off of the Linux
kernel. On top of the Linux kernel are the middle-
ware, libraries and APIs, and the application software
running on the application framework. This frame-
work also includes Java-compatible librares. Android
uses the Dalvik virtual machine with a just-in-time
compilation to run Dalvik dex code.

The Android operating system does have its own built
in security and privacy. All Android applications run
in a sandbox. A sandbox is an isolated area of the sys-
tem that typically do not have access to the rest of the
system’s resources. The only way to get access to these
resources are through permissions. Before an Android
application is installed, the Google Play Store displays
all requested permissions. After reviewing these per-
missions, the user can choose to accept or refuse the
requests. The application will only be installed if they
accept the requests. An example of this is a basic game
application. A game application will need permission
to save data to the SD card and possibe to have ac-
cess to the accelerometer. This concept appears to be
simple, however, many developers seem to have devel-
oped confusion through poor documentation leading
to applications constantly requesting permissions that
are unnecessary. Access to privilege permission such
as a user’s contact list or wifi connectivity is the main
definition of malware on Android devices.

With mobile device usage growing at an alarming
rate, the increase in devices and the increase in prof-
itability in malware targeted to mobile platforms, An-
droid has become a victim of many attacks. There
have been four major malware attacks. First, fake
banking applications lure customers into entering their
bank account information login details. Second, An-
droid.Geinimi has corrupted many legitimate Android
games from Chinese download sites. Third, Droid-
Dream infects devices, breached the android security
sandbox and stole data. Fourth, the AndroidOS fake



player appears to be a media player and silently sends
SMS to premium SMS numbers.

The protection of private data and allowing users to
interact with the online community without fear of
their device being compromised is a must. The Pub-
lic Intelligence published a report that says 79 % of
all mobile threats in 2012 targeted Android. Many
anti-malware programs have been created, each tout-
ing itself as the best on the market. However, there is
a lack of proper evidence to prove which commerical
anti-malware programs are best.

After performing the study, we were able to determine
certain things about Android mobile security. First,
there is need for access to current android malware in
order to properly test security tools. Second, there is
need of open source collaboration between academic
and industry in order to share and create security
testing tools for android. Third, industry may need
to allow open source versions of their security appli-
cations in order for better research to be conducted
in this area. Lastly, the best way to enhance mo-
bile security would be from the operating system and
not from external applications. Malware security is a
threat to the privacy of its users and enahcned mobile
operating system security is determined as the best
method.

In this paper we will further review many security top-
ics and possible solutions on a mobile device. In sec-
tion two, we will talk about related work. In section
three, a review of the android threat model and the
possible threats specific to Android devices. In the
fourth section, we will go over how we conducted our
basic experiment. In the fifth section, we will review
the results of the experiment. In the sixth section, a
discussion of the security techniques already invested
in the Android mobiile operating system. Finally, sec-
tion seven will go over the conclusion we have drawn
and the theoritcal solutions we have developed.

2 Related Work

There are many works related to mobile malware de-
tection. In 2005, Yap and Ewe created a prototype
of the simulation that malicious software and detec-
tion software on mobile devices. They also proposed
a basic solution that detection software should have
three main components: scanning, behavior checkers,
and integrity checkers. The comparison of these re-
quirements to todays commercial mobile malware de-

Figure 1: Mobile Threat Agent Identifier And Types
[5]

tection demonstrate that most lack at least two of
these three requirements. However, all include the ba-
sic scanning.[14] In 2007, Cheng, Wong, Yang and Lu
developed the SmartSiren a collaborative virus detec-
tion and alert system for smartphones. Even with it
feasibility and effectiveness in trace-driven simulation
it appears that industry has failed to include academia
in it development of such tools.[3] At North Carolina
State University Yajin Zhou and Xuxian Jiang have
started the Android Mawlare Genome Project. In this
project they focus on the Android platform and aim
to systematize existing Android malware.[11] There
effort hopes to aid the call for better development of
next generation anti-mobile malware solutions.

3 Android Threat Model

The mobile operating systems are facing new chal-
lenges daily. These challenges are noticeably similar
to problems encountered earlier in the development
of the personal computer.[14] There are many threat
agents for mobile operating system. These threats are
repsented in Figure 1. The first category of threat
agents deal with human interaction. These threats in-
clude the stolen device user, the owner of the device,
the common WiFi network user, the malicious devel-
oper, the organization internal employees and the app
store approvers/reviewers. The stolen device user is
a user who obtained unauthorized access to the de-
vice trying to get enhanced access to sensitive infor-
mation. The common wifi network user is an agent



Figure 2: How to Attack a Mobile Operating System
[5]

who either intentionally or unintentionally sniffs the
wifi network used by a victim. The information from
the sniffing may be used to launch further attacks.
The malicious developer is a human user who writes
applications with harmful intent. This agent is look-
ing to steal information the device in order to possi-
bly use it to perform a denial-of-service attack. There
are subcategories under this particulate agent. First,
the organization internal employees who have privi-
leges to perform an action on the application. Second,
the app store approvers and reviewers that fail to re-
move dangerous applications from their store. The
most popular human interaction based threat agent
is the owner of the device is a user who unknowingly
installed a malicious application on their own phone
which is able to get access to the devices application
memory.[5] Threat agents are automated programs.
The automated programs we are concerned about are
the malware on the mobile device. This is any mo-
bile application that performs suspicious activity.The
main areas of concern on android mobile devices in-
cludes malicious SMS and malicious applications. The
malicious SMS is an incoming SMS that triggers sus-
picious activity on the mobile device. The malicious
application is the failure to detect potentially harm-
ful code.[5] Threat agents aid in the development in
mobile applications. Threat agents allow developers
to focus on specific attacks that would be more signif-
icant on mobile operating systems and than on per-
sonal computers. The understanding of threat agents
aids in the development of mobile security.

Figure 2 demonstrates how a threat agent attack a
mobile operating system. First, the attacker plans the

attack. A specific threat of most Android attacks are
the development of applications that request permis-
sions to sensitive data, such as the contact list. The
attacker than plays the attack by add the this mali-
cious application to the Google Play Store. A user
downloads the application and their personal data is
stolen. Lastly, the attacker gathers information and
uses the sensitive information maliciously.

4 Experiment

The experiment was conducted on an ASUS Nexus 7
with a quad-core Qualcomm Snapdragon S4 Pro pro-
cessor and 2GB of RAM. The Android application
that were tested in this study are some of the top
mobile security applications from Googles Play Store.
These applications were: AVG, Avast, Lookout, Nor-
ton, MacAfee, and Malware Bytes. For security rea-
sons the malware used to conduct this experiment will
not be named. Each malware detection application
was downloaded and installed from the Google Play
Store and than ran while there was no malware in-
jected onto the device. Once the original scan was
performed we injected a known malware on to the de-
vice and allow the malware detection application to
scan the known malware. Our hypothesis was that
sense all the malware had already been named and
discovered that their would be a 100% detection rate
amongst all of the applications. Along with the detec-
tion rate results each application contained some no-
table features. Avast had no mobile operating system
integration. This means it worked solely on the An-
droid framework and did not alert the operating sys-
tem that it had located a virus. Lookout had specific
text pop ups that included more information about the
malware trying to be installed. MacAfee was the slow-
est and seemed to have many graphical user interface
issues. Overall it appeared to have a poorest imple-
mentation. Malware Bytes offered the user a whitelist
option, so that even if it detect a malicious malware
the user could still allow it on the device. Lastly, AVG
focused on the prevention of even installing the appli-
cation.Even though there were many differences, the
Android malware detection applications all still ex-
cuted basic functions.

Android malware commonly executes the following
functions: collect a variety of information on the
infected mobile phone, including the IMEI number,
phone model, as well as the Android OS version, and
attempt to get root access on the phone using two



separate exploits. Some of the research questions that
have arisen from this are: How to best test android
malware applications? What are the limits of mobile
security? Why there arent many mobile security test-
ing procedures?

One note about the malware used to test the an-
tivirus applications is that the majority of the mal-
ware had names that a user should know better than
to install. Most malware detection is signature-based,
and future work will include altering known good pro-
grams to contain certain malicious signatures with-
out altering the name and/or manifest to reflect these
changes.

While loading the malware onto the device, there were
two malicious programs that failed to load even when
no antivirus was installed. It seems that even malware
developers dont always test their code before deploy-
ing. Loading the malware was a quick process via the
injector and using the injector saved several hours of
effort compared to using standard tools to recompile
source and load onto the device by the android devel-
opment suite available through eclipse.

Finally, we chose to use an actual device for these tests
to better understand how the malware and antivirus
software would work en vivo rather than depend on the
emulator available through the android development
kit. This gave us an opportunity to see the actual
install time and reaction time of the antivirus software
as opposed to depending on the emulator environment
to base our results on, which often runs very slow even
on high power machines.

In addition to running top antivirus solutions, we also
began work on a new type of tool. The idea, to be
discussed further in the experimental solution section,
was to view memory dumps of the OS to assist in de-
termining processes currently running. Using the tool
Volatility, we scanned phone memory and were able
to obtain a complete list of processes even if the pro-
cess had been hidden from normal viewing. However,
time limitations stopped us from being able to com-
plete our tool. The goal of the tool was to be able
to detect maliciously running processes similar to in-
trusion detection systems for the standard operating
system.

5 Results

Below is a table of the results of our experiments. For
each antivirus, the twenty malware applications were

Figure 3: Android Malware Success Rate

sent to the device via the injector. As can be seen
in the chart, only AVG and McAfee found all possi-
ble infections. In addition to correctly detecting and
removing malware, there were two other metrics in-
volved. First, speed of reaction time was taken into
account. Secondly, the pro-active nature of the ap-
plication was observed. Figure 5 is a chart for these
secondary metrics. These results are encouraging in
the case of AVG but show that most of the popu-
lar android antivirus applications are lacking in major
ways. All of the malware was at least 2 years old. The
fact that any antivirus would miss a piece of malicious
software that had been out for 2 or more years greatly
reduces our confidence in most of the current antivirus
solutions.

Reaction time and proactivity were also eye opening.
While most applications responded within about a sec-
ond of the malware being downloaded, MacAfee was
woefully inefficient, needing 2-3 seconds to respond
and taking even more time to fully open and allow a
user to interact. AVG on the other hand acted before
the malware was even downloaded, stopping the mal-
ware from download unless the user interacted and
accepted the action. Even if the user accepted the
action, AVG popped up another warning in under a
second for the user to remove the malware. All other
applications took about 1 second from the time the
malware was downloaded to the time that a message
appeared and the user was notified that malware had
been installed.

The performance of the tool currently being developed
in parallel with this paper is encouraging. By using a
list of known malware, we can immediately check apps
that are being downloaded for known malicious soft-



Figure 4: Android Malware Failures

Figure 5: Reaction and Proactive Results

Figure 6: Android Mobile Operating System Usage on
Smartphones

[18]

ware. The techniques used in Volatility allowed us to
view any process running, even if it was hidden. This
in turn gives us a possible heuristic to classify mal-
ware, the thought being that if the application is not
on a white list and is hiding its activity, it has a higher
chance of being malicious. Due to time constraints,
this tool is not yet complete, but the initial results are
strong enough to warrant further work.

6 Mobile Operating System Se-
curity Techniques

The Android operating system has many security tech-
niques implemented. The security is improved with
each upgrade to the operating system. However, as
demonstrated in Figure 6 most people use Jelly Bean,
and have not upgraded to the latest operating system
KitKat.

Jelly Bean has a couple of security feactures. Jelly
Bean uses SELinux, a mandatory access control
(MAC) system in the Linux kernel to augment the
UID based application sandbox. This protects the
operating system against potential security vulner-
abilities. However, in KitKat the updates to the
SELinux configuration goes from ”permissive” to ”en-
forcing.” This means potential policy violations within
a SELinux domain that has an enforcing policy will be
blocked.[18]

The Jelly Bean KeyChain API provides a method that
allows applications to confirm that system-wide keys
are bound to a hardware root of trust for the de-



vice. This provides a place to create or store private
keys that cannot be exported off the device, even in
the event of a root or kernel compromise.[18] Kitkat
introduces a keystore provider and APIs that allow
applications to create exclusive-use keys. Using the
APIs, apps can create or store private keys that can-
not be seen or used by other apps, and can be added
to the keystore without any user interaction. The key-
store provider provides the same security benefits that
the KeyChain API provides for system-wide creden-
tials, such as binding credentials to a device. Pri-
vate keys in the keystore cannot be exported off the
device.[18]

KitKat has other advantages over Jelly Bean. For ex-
ample the /system partition is now mounted nosuid for
zygote-spawned processes, preventing Android appli-
cations from executing setuid programs. This reduces
root attack surface and likelihood of potential security
vulnerabilities.[18]

KitKat has improved its security further by adding
support for two more cryptographic algorithms. Ellip-
tic Curve Digital Signature Algorithm (ECDSA) sup-
port has been added to the keystore provider improv-
ing security of digital signing, applicable to scenarios
such as signing of an application or a data connection.
The Scrypt key derivation function is implemented
to protect the cryptographic keys used for full-disk
encryption.[18]

KitKat also uses virtual private networks (VPNs).
VPNs are now applied per user. This can allow a user
to route all network traffic through a VPN without af-
fecting other users on the device. Also, Android now
supports FORTIFY SOURCE level 2, and all code is
compiled with those protections. FORTIFY SOURCE
has been enhanced to work with clang.[18]

7 Conclusions

In conclusion, we discovered that commerical malware
fails to ensure proper security for the average Android
mobile user. The standard commerical anti-virus at
most performs basic signature detection, in which may
be sufficient for the time being will definitely be un-
satisfying for the mobile phone user in the long run.
Mobile anti-virus solutions appear to fail in even fully
scanning the Android manifest file which request un-
neessary permissions. There is work in testing how
many applications in the Google Play Store request
unnecessary permissions however, they fail to provide

a solution.

7.1 Solutions

Security Through The Operating Sys-
tem

Since the confusion comes from the numerous de-
velopers were propose the Android operating system
provide permission checking based on the hard-coded
rules already developed. This has begun to be en-
forced by KitKat however, as demonstrated in Figure
6 most users are still on the Jelly Bean operating sys-
tem. Mandatory Updates

Power Consumption

Anti-Virus solutions have other problems. From a mo-
bile device perspective power consumption is a ma-
jor consideration.Anotable future work would be to
also test the power consumption of running an anti-
virus on a device, in order to track the loss of per-
formance on the device. but almost no consideration
with a traditional Traditional anti-virus solutions can
use far more processing power and run longer than
those on mobile devices without worrying about drain-
ing the battery. Additionally, classic anti-virus doesnt
seem to mind hogging all system resources, while mo-
bile device users become disgruntled when the devices
slows down. With full integration into browsers and
the resources to run applications in sandboxes, stan-
dard operating system based anti-virus solutions have
much greater flexibility in virus detection and preven-
tion.

Human Computer Interaction

While conducting our research we realized another
area to consider is the human computer interaction
(HCI). HCI is the study, planning, and design of the
interaction between users and computers. It is often
regarded as the intersection of computer science, be-
havioral sciences, design and several other fields of
study. The term connotes that, unlike other tools with
only limited uses a computer has many affordances for
use and this takes place in an open-ended dialog be-
tween the user and the computer.

Because humancomputer interaction studies a human
and a machine in conjunction, it draws from support-



ing knowledge on both the machine and the human
side. On the machine side, techniques in computer
graphics, operating systems, programming languages,
and development environments are relevant. On the
human side, communication theory, graphic and in-
dustrial design disciplines, linguistics, social sciences,
cognitive psychology, and human factors such as com-
puter user satisfaction are relevant. Engineering and
design methods are also relevant. Due to the multi-
disciplinary nature of HCI, people with different back-
grounds contribute to its success.

Attention to human-machine interaction is important
because poorly designed human-machine interfaces
can lead to many unexpected problems. Mobile de-
vices brings a whole knew concept. Due to the limited
screen size and less ability to do fine grained manipu-
lation on a mobile device, the interfaces are often far
less powerful and give the user less control over the ac-
tions taken. This is especially noticeable in McAfees
mobile solution which tries to to replicate its horrific
grandeur from traditional systems. It slows down the
system considerably.

7.2 Experimental Solution

We suggest further work on the tool started in paral-
lel with this paper. Current malware detection tech-
niques are lacking in their ability to discover hidden
processes and associate certain activity spawned by a
program with malicious intent. Using the techniques
from volatility, we believe that we can fully integrate
full memory scans to determine when processes a hid-
den or are executing subprocesses that could poten-
tially be malicious. These actions include, but are not
limited to: mass texts, sending of information from
the phone that is not generated in the app, spawning
hidden processes, spawning multiple new processes in
a short period, sending messages to system processes
or other apps that are unrelated, and blocking access
to antivirus sites or system updates. I hope would be
that this tool could be integrated into the mobile oper-
ating system for enhanced security and better resource
distribution.

After performing the study, we were able to determine
certain things about Android mobile security. First,
there is need for access to current android malware
in order to properly test security tools. Second, there
is need of open source collaboration between academic
and industry in order to share and create security test-
ing tools for android.Third, industry may need to al-
low open source versions of their security applications

in order for better research to be conducted in this
area. Lastly, the best way to enhance mobile security
would be from the operating system and not from ex-
ternal applications. Malware security is a threat to the
privacy of its users and enahcned mobile operating sys-
tem security is determined as the best method.

References

[1] Buennemeyer, Timothy, Battery-Sensing Intru-
sion Protetion System (B-SIPS), 2008.

[2] Bose, Abhijt, Hu, Xin, Shin, Kang, and Park, Tae-
joon, Behavioral Detection of Malware on Mobile
Handsets, 2008.

[3] Cheng, Jerry, Wong, Starsky, Yang, Hao, and Lu,
Songwu,SmartSiren: Virus Detection and Alert
for Smartphones, 2007.

[4] Enck, William, Ongtang, Machigar, and Mc-
Dainel, Patrick, Understanding Android Security
2009.

[5] Eston, Tom, Mannino, Jack, Ashokkumar,
Sreenarayan, Deshmukh, Swapnil, Knight, Bran-
don, Jensen, Steve, Modi, Shimon, Marcos, Ro-
drigo, Clark, Brandon, Quemener, Yvesmarie,
Paralikar, Yashraj, and Taank, Ritesh, OWASP
Mobile Security Project - Mobile Threat Model,
2012.

[6] Felt, Adrienne, Finifter, Matthew, Chin, Erika,
Hanna, Steven, and Wagner, David, A Suvery of
Mobile Malware in the Wild, 2011.

[7] Jacoby, Grant, Battery-Based Intrusion Detection,
2008.

[8] Martin, Hsiao, Michale, Ha, Dong, and Kr-
ishnaswami, Jayan, Denial-of-Service Attacks on
Battery-powered Mobile Computers, 2004.

[9] Maiorana, Emanuele, Campisi, Patrizio, Gonzalez-
Carballo, Noelia, and Neri, Alessandro, Keystroke
Dynamics Authneitcation for Mobile Phones, 2011.

[10] Oberheide, Jon and Jahanian, Farnam, When
Mobile is Harder Than Fixed (and Vice Versa):
Demystifying Security Challenges in Mobile Envi-
ronments, 2010.

[11] Zhou, Yajin, Jiang, Xuxian, Android Malware
Genome Project, 2012.



[12] Schmidt, Aubrey-Derrick, Peters, Frank, Florian,
Lamour, and Albayrak, Sahin, Monitoring Smart-
phones for Anomaly Detection, 2008.

[13] Shabtai, Asaf, Fledel, Yuval, Kanonov, Uri,
Elovici, Yuval, and Dolev, Shlomi, Google An-
droid: A State-of-the-Art Review of Security Mech-
anisms.

[14] Yap, Teck and Ewe, Hong, A Mobile Phone Ma-
licious Software Detection Model with Behavior
Checker, 2005.

[15] Zhou, Yajin and Jiang, Xuxian, Dissecting An-
droid Malware: Characterization and Evolution,
2012.

[16] Zhou, Yajin, Wang, Zhi, Zhou, Wu, and Jiangm
Xuxian, Hey, You, Get Off of My Market: De-
tecting Malicious Apps in Official and Alternative
Android Markets, 2012.

[17] Glynn, Fergal, Android Security Guide to An-
droid OS, Mobile Application Security — Vera-
code, 2013.

[18] Android, www.android.com.


