THE QUANTIFICATION OF **DIGITAL FORENSIC ANALYSIS**

IMANI PALMER

OUTLINE

- Motivation
- Problem Statement
- Analysis of Models
- Discussion
- Future Work
- Conclusion

FORENSIC PROCESS

THE SONY HACK

- "The Interview"
 - A movie about the assassination attempt of Kim Jong-Un
- The Hack, November 2014
 - Guardians of Peace
 - 100 terabytes of data
 - Dump unreleased movies onto the Internet
 - Release private information about Sony employees

AN ANALYSIS PROBLEM

- North Korea
 - Poorly worded messages
 - Blaming "The Interview"
 - Striking similarities in the code used in the Sony hack
 - FBI investigation supports this conclusion

Sony Employees

- Norse Cyberintelligence Firm
- North Korean operatives don't normally name themselves
- Lack of infrastructure
- Suspicious activity of disgruntled former Sony employees

THE CASEY ANTHONY MURDER TRIAL

- Charged with killing daughter, Caylee
 - Cindy Anthony (Casey's mother) reported child missing
 - Casey's car smelled like a dead body
 - Body found near home
 - Medical examiner officially listed death as caused by "undetermined means"
- Prosecution
 - Casey didn't want to be a mother
 - Sought the death penalty

AN ANALYSIS PROBLEM

Prosecution

- Internet search history for "choloroform"
 - Relevant for evidence or premeditation
- Computer forensics expert (a police officer) used tool Cacheback to determine that the computer has been used to visit a website on making chloroform 84 times

Defense

•

- Prosecution can't connect Casey Anthony to the computer search
 - Others had access to the computer
- Different tool,
 NetAnalysis, generated different result – 1 visit
- Cacheback designer, John Bradley, got different results when he redesigned the tool
 - Told the police and prosecutors

MOTIVATION

- Systems composed of a large number of components vulnerable to attacks
- Systems generate an enormous amount of digital evidence
- Incident responders/examiners determine the cause of the intrusion
- Analysis of digital evidence remains highly subjective to the forensic practitioner

PROBLEM STATEMENT

Digital forensics is in need of a deterministic approach to obtain the most accurate conclusions from the evidence

REASONING MODELS

- Differential Analysis
- Reconstruction Models
 - Event Reconstruction
 - Back-Tracing Events
 - Attack Graphs
- Probabilistic Models
 - Classical Probability
- Probabilistic Graphical Models
 - Bayesian Model
 - Dempster-Shafer Theory
 - Factor Graphs
 - Markov Random Fields

SHERLOCK HOLMES IN DIGITAL TIMES

John Garrity, a former employee of AeroSoft Inc, returned his company-issued laptop. This laptop was checked by his boss after the IT guy noticed that John used four times more data than his co-workers. After further investigation illegal images were discovered in a folder that stores images viewed online. John was fired and charged with possession of illegal images.

DIFFERENTIAL ANALYSIS

- Method of data comparison used for reporting differences between two digital objects
- Need differential analysis to limit the amount of evidence that is needed

EVENT RECONSTRUCTION MODELS

- Determine all of possible routes connecting the gaps of a specific trace
- Finding all possible routes may require exponential time; therefore, the search area would need to be bounded
- Likelihood value measures how likely the target, could have been observed in the current vertex if he took the leading edge
- Connect all the routes with the highest likelihood value and form the final reconstructed trace

CASE STUDY: EVENT RECONSTRUCTION

CASE STUDY: BACK-TRACING EVENTS STATES

ATTACK GRAPHS

- Directed graphs where nodes represent pre and post conditions of machine events
- Directed edges are conditions met between the nodes
- Lacking of any probabilistic inference
- Combine attack graphs with Bayesian networks

CASE STUDY: ATTACK GRAPHS

CASE STUDY: DIFFERENTIAL ANALYSIS

Average Worker

John Garrity

PROBABILISTIC MODELS

Assess the degree of certainty for which hypotheses and evidence can be linked

CASE STUDY: ANALYSIS

CLASSICAL PROBABILITY

File Does Not Exist

0

File Does Exist

1

CLASSICAL PROBABILITY

- Provide a quantitative assessment of the likelihood of guilt
- Example: Likelihood of an intentional download of illegal images versus accidental download
 - Illegal images seized was small compared to the total amount of content
 - Illegal images downloaded over a long period of time
 - Probability of unintentionally download a small amount of illegal images is below 10%
- Limited to investigations with few characteristics of evidential value

PROBABILISTIC GRAPHICAL MODELS

- Graph-based representations of dependencies among random variables
- Compactly represent complex joint distributions of random variables over a high-dimensional space
- Random variables consist of observed user events (derived from digital evidence) and hidden user states associated with the events

BAYESIAN NETWORKS

- Bayes' theorem determines probability of evidence resulting from a hypothesis
- P(A|B) = P(B|A) P(A) / P(B)
- A and B are events
- P(A) and P(B) are the probabilities of events without regard to each other
- P(A|B) a conditional probability of observing event A given that B is true
- P(B|A) is the probability of observing event B given that A is true

BAYESIAN NETWORKS

Bayesian model

- Root and sub hypothesis
- Dependent on the assignment of prior probabilities
 - Compute the probability for the modification of a particular registry key
 - Compute the probability of a particular registry key being modified given that the malware did not gain privileged access
- Uses a directed acyclic graphs G = (V,E) to represent causal dependencies among random variables
 - Each vertex corresponds to a random variable
 - Each directed edge represents a causal relation between two variables
 - $X \rightarrow Y$, means X causes Y

CASE STUDY: BAYESIAN NETWORK

Illegal Images Found on Laptop

DEMPSTER-SHAFER THEORY

- Does not require one to provide a prior probability for the hypothesis
- Does not require the use of conditional probabilities
- Presence of certain evidence during forensic analysis does not necessarily indicate a malicious activity
- Example:
 - A change in registry key could be either due to a malware or a benign application
- Provide rules for combining multiple evidences to calculate the overall belief in the hypothesis

CASE STUDY: DEMPSTER-SHAFER THEORY

Malware

Downloaded

1. Illegal Images Found on Laptop						
Т	F	U				
0.3	0.6	0.1				

Illegal Found on Images											
	2. Malware Downloaded		re ed				Malware Found				
1	T	F	U	Malware	1	2	Т	F	U		
				Found on	F	F	0.1	8.0	0.1		
F	0.3	0.5	0.2	Сартор	F	Т	0.7	0.1	0.2		
Т	0.05	0.80	0.15		Т	F	0.75	0.1	0.15		
					Т	Т	0.85	0.05	0.1		

lllegal

Images

MARKOV RANDOM FIELDS

- Uses an undirected graph G = (V,E) to represent relations among random variable
- Each vertex corresponds to a user event
- Each edge represents a relation between two variables
- Illustrates non-causal dependencies among events and user states

CASE STUDY: MARKOV RANDOM FIELD

CASE STUDY: MARKOV RANDOM FIELD

FACTOR GRAPH

- Describe complex dependencies among user events using an undirected graph
- Variable dependencies are expressed using a global function, which is factored into a product of local functions

CASE STUDY: FACTOR GRAPHS

DISCUSSION

- Differential Analysis
 - Noise
- Event Reconstruction
 - Limited attack presentation
- Probabilistic Models
 - Prior probabilities
 - Niche scenarios
- Implementation in the legal system

DIGITAL FORENSICS ANALYSIS AND LEGAL

Daubert Standard

- Judge is gatekeeper
- Relevance and reliability
- Scientific knowledge
- Factors relevant
 - Empirical testing
 - Peer review
 - Potential error rate
 - Standards
 - Acceptance

FACTORS RELEVANT

- Empirical testing
- Peer review
- Potential error rate
- Standards
- Acceptance

FRAMEWORK

CONCLUSION

Digital forensics is in need of a deterministic approach to obtain the most judicious conclusions from evidence

- Identify limitations of current models
- Explore potential models
- Implement framework
- Determine proper evaluation methods

REFERENCES

- 1. <u>http://media.economist.com/sites/default/files/cf_images/20010331/13</u> 01st1.jpg
- 2. <u>http://deadline.com/2014/12/sony-hack-timeline-any-pascal-the</u> <u>-interview-north-korea-1201325501/</u>
- 3. CS 498 AL1: Digital Forensics II Professor Anna Marshall
- 4. <u>http://www.politico.com/story/2014/12/fbi-briefed-on-alternate-sony-hack-theory-113866.html</u>
- 5. <u>http://www.digital-detective.net/digital-evidence-discrepancies</u> <u>-casey-anthony-trial/</u>
- 6. Nagy, Stefan, et al. "An Empirical Study on Current Models for Reasoning about Digital Evidence."
- 7. Preemptive Intrusion Detection: Theoretical Framework and Real-World Measurements